176 research outputs found

    Finding Connected Dense kk-Subgraphs

    Full text link
    Given a connected graph GG on nn vertices and a positive integer knk\le n, a subgraph of GG on kk vertices is called a kk-subgraph in GG. We design combinatorial approximation algorithms for finding a connected kk-subgraph in GG such that its density is at least a factor Ω(max{n2/5,k2/n2})\Omega(\max\{n^{-2/5},k^2/n^2\}) of the density of the densest kk-subgraph in GG (which is not necessarily connected). These particularly provide the first non-trivial approximations for the densest connected kk-subgraph problem on general graphs

    Ambulatory sleep scoring using accelerometers—distinguishing between nonwear and sleep/wake states

    Get PDF
    Background. Differentiating nonwear time from sleep and wake times is essential forthe estimation of sleep duration based on actigraphy data. To efficiently analyze large-scale data sets, an automatic method of identifying these three different states is re-quired. Therefore, we developed a classification algorithm to determine nonwear, sleepand wake periods from accelerometer data. Our work aimed to (I) develop a new patternrecognition algorithm for identifying nonwear periods from actigraphy data based onthe influence of respiration rate on the power spectrum of the acceleration signal andimplement it in an automatic classification algorithm for nonwear/sleep/wake states;(II) address motion artifacts that occur during nonwear periods and are known to causemisclassification of these periods; (III) adjust the algorithm depending on the sensorposition (wrist, chest); and (IV) validate the algorithm on both healthy individuals andpatients with sleep disorders. Methods. The study involved 98 participants who wore wrist and chest accelerationsensors for one day of measurements. They spent one night in the sleep laboratoryand continued to wear the sensors outside of the laboratory for the remainder of theday. The results of the classification algorithm were compared to those of the referencesource: polysomnography for wake/sleep and manual annotations for nonwear/wearclassification. Results. The median kappa values for the two locations were 0.83 (wrist) and 0.84(chest). The level of agreement did not vary significantly by sleep health (good sleepersvs. subjects with sleep disorders) (p=0.348,p=0.118) or by sex (p=0.442,p=0.456).The intraclass correlation coefficients of nonwear total time between the referenceand the algorithm were 0.92 and 0.97 with the outliers and 0.95 and 0.98 after theoutliers were removed for the wrist and chest, respectively. There was no evidence of anassociation between the mean difference (and 95% limits of agreement) and the meanof the two methods for either sensor position (wrist p=0.110, chest p=0.164), and themean differences (algorithm minus reference) were 5.11 [95% LoA−15.4–25.7] and1.32 [95% LoA−9.59–12.24] min/day, respectively, after the outliers were removed. Discussion. We studied the influence of the respiration wave on the power spectrum ofthe acceleration signal for the differentiation of nonwear periods from sleep and wakeperiods. The algorithm combined both spectral analysis of the acceleration signal and rescoring. Based on the Bland-Altman analysis, the chest-worn accelerometer showed better results than the wrist-worn accelerometer

    Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells.

    Get PDF
    Angiogenesis, the sprouting of new capillaries from preexisting blood vessels, results from a disruption of the balance between stimulatory and inhibitory factors. Here, we show that anoxia reduces expression of thrombospondin-1 (TSP-1), a natural inhibitor of angiogenesis, in glioblastoma cells. This suggests that reduced oxygen tension can promote angiogenesis not only by stimulating the production of inducers, such as vascular endothelial growth factor, but also by reducing the production of inhibitors. This downregulation may significantly contribute to glioblastoma development, since we show that an increase in TSP-1 expression is sufficient to strongly suppress glioblastoma cell tumorigenicity in vivo

    Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic Acid microarrays identifies several candidate genes as markers of malignancy.

    Get PDF
    International audienceThe aim of this study was to identify predictor sets of genes whose over- or underexpression in human sporadic adrenocortical tumors would help to identify malignant vs. benign tumors and to predict postsurgical metastatic recurrence. For this, we analyzed the expression of 230 candidate genes using cDNA microarrays in a series of 57 well-characterized human sporadic adrenocortical tumors (33 adenomas and 24 carcinomas). We identified two clusters of genes (the IGF-II cluster containing eight genes, including IGF-II, and the steroidogenesis cluster containing six genes encoding steroidogenic enzymes plus eight other genes) whose combined levels of expression appeared to be good predictors of malignancy. This predictive value was as strong as that of the pathological score of Weiss. The analysis of the population of carcinomas (13 tumors) for genes whose expression would be strongly different between recurring and nonrecurring tumors allowed identification of 14 genes meeting these criteria. Among these genes, there are probably new markers of tumor evolution that will deserve additional validation on a larger scale. Taken together, these results show that the parallel analysis of the expression levels of a selected group of genes on microgram quantities of tumor RNA (a quantity that can be obtained from fine needle aspirations) appears as a complementary method to histopathology for the diagnosis and prognosis of evolution of adrenocortical carcinomas

    An 800-million-solar-mass black hole in a significantly neutral Universe at redshift 7.5

    Get PDF
    Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120+0641 at z=7.09 has remained the only one known at z>7 for more than half a decade. Here we report observations of the quasar ULAS J134208.10+092838.61 (hereafter J1342+0928) at redshift z=7.54. This quasar has a bolometric luminosity of 4e13 times the luminosity of the Sun and a black hole mass of 8e8 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old---just five percent of its current age---reinforces models of early black-hole growth that allow black holes with initial masses of more than about 1e4 solar masses or episodic hyper-Eddington accretion. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman alpha emission line (the Gunn-Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342+0928 is neutral. We derive a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.Comment: Updated to match the final journal versio

    Polyhedra Circuits and Their Applications

    Get PDF
    To better compute the volume and count the lattice points in geometric objects, we propose polyhedral circuits. Each polyhedral circuit characterizes a geometric region in Rd . They can be applied to represent a rich class of geometric objects, which include all polyhedra and the union of a finite number of polyhedron. They can be also used to approximate a large class of d-dimensional manifolds in Rd . Barvinok [3] developed polynomial time algorithms to compute the volume of a rational polyhedron, and to count the number of lattice points in a rational polyhedron in Rd with a fixed dimensional number d. Let d be a fixed dimensional number, TV(d,n) be polynomial time in n to compute the volume of a rational polyhedron, TL(d,n) be polynomial time in n to count the number of lattice points in a rational polyhedron, where n is the total number of linear inequalities from input polyhedra, and TI(d,n) be polynomial time in n to solve integer linear programming problem with n be the total number of input linear inequalities. We develop algorithms to count the number of lattice points in geometric region determined by a polyhedral circuit in O(nd⋅rd(n)⋅TV(d,n)) time and to compute the volume of geometric region determined by a polyhedral circuit in O(n⋅rd(n)⋅TI(d,n)+rd(n)TL(d,n)) time, where rd(n) is the maximum number of atomic regions that n hyperplanes partition Rd . The applications to continuous polyhedra maximum coverage problem, polyhedra maximum lattice coverage problem, polyhedra (1−β) -lattice set cover problem, and (1−β) -continuous polyhedra set cover problem are discussed. We also show the NP-hardness of the geometric version of maximum coverage problem and set cover problem when each set is represented as union of polyhedra

    Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002

    Get PDF
    BACKGROUND: Although diet and activity are key factors in the obesity epidemic, laboratory studies suggest that endocrine disrupting chemicals may also affect obesity. METHODS: We analyzed associations between six phthalate metabolites measured in urine and body mass index (BMI) and waist circumference (WC) in National Health and Nutrition Examination Survey (NHANES) participants aged 6–80. We included 4369 participants from NHANES 1999–2002, with data on mono-ethyl (MEP), mono-2-ethylhexyl (MEHP), mono-n-butyl (MBP), and mono-benzyl (MBzP) phthalate; 2286 also had data on mono-2-ethyl-5-hydroxyhexyl (MEHHP) and mono-2-ethyl-5-oxohexyl (MEOHP) phthalate (2001–2002). Using multiple regression, we computed mean BMI and WC within phthalate quartiles in eight age/gender specific models. RESULTS: The most consistent associations were in males aged 20–59; BMI and WC increased across quartiles of MBzP (adjusted mean BMI = 26.7, 27.2, 28.4, 29.0, p-trend = 0.0002), and positive associations were also found for MEOHP, MEHHP, MEP, and MBP. In females, BMI and WC increased with MEP quartile in adolescent girls (adjusted mean BMI = 22.9, 23.8, 24.1, 24.7, p-trend = 0.03), and a similar but less strong pattern was seen in 20–59 year olds. In contrast, MEHP was inversely related to BMI in adolescent girls (adjusted mean BMI = 25.4, 23.8, 23.4, 22.9, p-trend = 0.02) and females aged 20–59 (adjusted mean BMI = 29.9, 29.9, 27.9, 27.6, p-trend = 0.02). There were no important associations among children, but several inverse associations among 60–80 year olds. CONCLUSION: This exploratory, cross-sectional analysis revealed a number of interesting associations with different phthalate metabolites and obesity outcomes, including notable differences by gender and age subgroups. Effects of endocrine disruptors, such as phthalates, may depend upon endogenous hormone levels, which vary dramatically by age and gender. Individual phthalates also have different biologic and hormonal effects. Although our study has limitations, both of these factors could explain some of the variation in the observed associations. These preliminary data support the need for prospective studies in populations at risk for obesity.National Institutes of Environmental Health Sciences (R21ES013724

    Manipulation planning under changing external forces

    Get PDF
    This paper presents a planner that enables robots to manipulate objects under changing external forces. Particularly, we focus on the scenario where a human applies a sequence of forceful operations, e.g. cutting and drilling, on an object that is held by a robot. The planner produces an efficient manipulation plan by choosing stable grasps on the object, by intelligently deciding when the robot should change its grasp on the object as the external forces change, and by choosing subsequent grasps such that they minimize the number of regrasps required in the long-term. Furthermore, as it switches from one grasp to the other, the planner solves the bimanual regrasping in the air by using an alternating sequence of bimanual and unimanual grasps. We also present a conic formulation to address force uncertainties inherent in human-applied external forces, using which the planner can robustly assess the stability of a grasp configuration without sacrificing planning efficiency. We provide a planner implementation on a dual-arm robot and present a variety of simulated and real human-robot experiments to show the performance of our planner
    corecore